
UNCLASSIFIED Copy 12

IDA PAPER P-3126

STRATEGIES AND IMPLEMENTATION ARCHITECTURES
FOR SELECTED DEPARTMENT OF DEFENSE

SOFTWARE REPOSITORIES

Audrey A. Hook, Task Leader

Michael C. Frame

19951228 041
September 1995

^ i^ * 0%
JAN 0 3 19961 1

Preparedfor
Office of the Deputy Assistant Secretary of Defense (Information Management)

Office of the Assistant Secretary of Defense
(Command, Control, Communications and Intelligence)

Approved for public release, unlimited distribution: December 5,1995

D2TC QUALITY INSPECTED

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

UNCLASSIFIED IDA Log No. HQ 95-047185

DEFINITIONS
IDA publishes the following documents to report the results ot its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional Journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract DASW01 94 C 0054 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

© 1995 Institute for Defense Analyses

This material may be reproduced by or for the U.S. Government pursuant to the copyright
license under the clause at DFARS 252.227-7013 (10/88).

UNCLASSIFIED

IDA PAPER P-3126

STRATEGIES AND IMPLEMENTATION ARCHITECTURES
FOR SELECTED DEPARTMENT OF DEFENSE

SOFTWARE REPOSITORIES

Audrey A. Hook, Task Leader

Michael C. Frame

September 1995

Accesion Foi" ~"

mF~cwüJ~
DTIC TAP

i Uncr,1cur1,c.d r
I JusWcatio-: _ L

Distribution/ """""

Availability Codes

Disl I Ava« aid/or""

Approved lor public release, unlimited distribution: December S, 1995

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract DASW01 94 C 0054
Task T-J5-1298

UNCLASSIFIED

PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) under the task

order, Information Technology Strategic Plan, and fulfills the objective of presenting alter-

native strategies for integration of DoD repositories. The work was sponsored by the Dep-

uty Assistant Secretary of Defense (Information Management), Office of the Assistant

Secretary of Defense (Command, Control, Communications and Intelligence).

A review of this paper was performed by the following IDA research staff mem-

bers: Ms. Anne A. Douville, Dr. Edward A. Feustel, Dr. Dennis W. Fife, Dr. Richard J.

Ivanetich, Dr. Richard R Morton, and Mr. Glen R. White.

in

Table of Contents

EXECUTIVE SUMMARY ES-1

1. INTRODUCTION 1

2. STRATEGIES, ARCHITECTURES, AND EVALUATION CRITERIA 3

2.1 Strategies 3
2.1.1 Re-Use Integration 3
2.1.2 Re-Engineering Integration 4

2.2 Architectures 4
2.2.1 Hypertext Markup Language 5
2.2.2 HTML-Database Implementation 6
2.2.3 Database Implementation 7
2.2.4 Repository Product 7

2.3 Evaluation Criteria 8
2.3.1 Technical Criteria 8
2.3.2 Functional Criteria 8
2.3.3 Administrative Criteria 9
2.3.4 Cost Criteria 9

3. EVALUATION MODEL 11

3.1 Evaluation Approach 11
3.2 Evaluation Model 12
3.3 Scoring Rationale 14
3.4 Implementation Architectures 15

4. RECOMMENDED STRATEGY-IMPLEMENTATION ARCHITECTURE
AND PLAN 19

APPENDK A. FUNCTIONAL REQUIREMENTS ANALYSIS A-l

LIST OF REFERENCES References-1

LIST OF ACRONYMS Acronyms-1

List of Tables

Table 1. Evaluation Matrix 13

Table A-l. DoD Repositories A-4

Vll

EXECUTIVE SUMMARY

This paper reviews proposed integration strategies and implementation architec-

tures for the integration of three Department of Defense software repositories: the Interim

IDEF repository for process re-engineering; the Defense Data Dictionary System (DDDS),

a repository for standard data elements, and the Defense Software Reuse System (DSRS),

a repository for software components. A primary goal of this integration is to allow users a

simple way of accessing the three repositories without being aware of which repository

they are using or when they move from one repository to another.

Information needed to perform a detailed analysis was not available. Therefore, at

the sponsor's direction, general assumptions were made by the Institute for Defense Anal-

yses research team, and a relatively simple model was developed to evaluate each strategy-

implementation architecture and how it met evaluation criteria.

Two strategies were given serious consideration: (1) the re-use integration strategy,

and (2) the re-engineering integration strategy. The re-use integration strategy would pro-

vide an integrated view of component repositories without necessarily requiring major

changes to those components. This would involve either a standards-based approach where

the repository providers would standardize a common look-and-feel interface, or a map-

ping-based approach where the providers would develop a software layer that would pro-

vide a mapping to the underlying component repositories. The re-engineering integration

strategy would involve designing and developing a completely new system, and having

users make the transition from the three existing systems to the new system.

The four candidate implementation architectures capable of supporting the integra-

tion strategies would use one of the following technologies: (1) Hypertext Markup Lan-

guage (HTML) and the World-Wide Web, (2) HTML and the Web in conjunction with a

commercial database management system, (3) a commercial database management system

alone, and (4) a software product specifically created to support repositories.

Technical, functional, administrative, and cost criteria were considered in judging

the value of a particular strategy-implementation architecture. The evaluation approach and

ES-1

model developed during the course of research scored and weighed three of the four crite-

ria. The functional criteria were not evaluated within this model because their issues were

the same for any strategy-implementation choice. The method and model were made gener-

ic enough to be applied to any other type of repository.

The evaluation model provided the basis for recommending the re-use integration

strategy with the HTML-database implementation. This choice reflected our experiences

with the Web as an effective vehicle for supporting distributed repositories. Although the

HTML-database implementation scored only slightly higher than the next two combina-

tions, it had the following distinct benefits:

• The three repositories (Interim IDEF, DDDS, and DSRS) are already on the

Internet and will only have to set up a Web environment. This will provide a rel-

atively fast implementation of integrated user interfaces. The Web supports the

necessary distributed processing, and it is easy to construct Web home pages

that provide hypertext links to the repositories. In addition, only a small number

of programs are necessary to construct HTML versions of the repository hold-

ings.

• The capability exists for future evolution to either of the other two high scoring

alternatives. Since the view of the repositories will give the appearance of an

integrated whole, any re-engineering integration of the underlying repositories

will be invisible to the user. The effect that re-engineering integration will have

on the HTML interface will be to change the links to the documents of the inte-

grated repository. If these links were generated automatically (as they should

have been), an underlying re-engineering integration will be accounted for by

regenerating the higher-level pages.

• Support is now provided for a graceful evolution toward integration. The exist-

ing systems can continue to operate as they currently do and current users will

not be affected. The new interface will be an add-on to the existing systems.

New users will be able to use the new or the old interface. Existing users will be

able to switch if they so desire.

Finally, a three-phase implementation approach is given for the evolution to the new

user interface.

ES-2

1. INTRODUCTION

In 1993, the Institute for Defense Analyses (IDA) performed a study for the

Defense Information Systems Agency/Center for Information Management (DISA/CIM)

to determine the feasibility of integrating the user interfaces of three software repositories

[Cohen and Frame 1993]. Subsequently, DISA/CIM concluded that a single platform, cen-

tralized repository would yield integrated repositories that could be most effectively man-

aged and accessed.

In 1994, the Office of the Deputy Assistant Secretary of Defense (Information Man-

agement) (DASD (IM)) asked IDA to explore a range of possible repository integration

strategies, including the approach adopted by DISA/CIM. This paper presents alternative

strategies and implementation architectures for integrating the three Department of

Defense (DoD) repositories:

• Interim IDEF, a repository for process re-engineering.

• Defense Data Dictionary System (DDDS),1 a repository for standard data ele-
ments.

• Defense Software Reuse System (DSRS), a repository for software compo-
nents.

Current DISA/CIM efforts center around two of the three repositories, the DDDS

and the Interim IDEF. These two repositories are the object of several integration projects

at the DISA Center for Software Data Administration Department (CFSW/DAD), includ-

ing the following:

• The acquisition of a commercial off-the-shelf (COTS) repository tool by the
CFSW for building a growing repository. It will be used initially to manage an
integrated DDDS and Interim IDEF. The software is expected to be acquired in

the summer of 1995, and the integrated DDDS and Interim IDEF are scheduled
to be operational in the fall of 1995.

1 Formerly known as the DoD Data Repository System.

• The development of an integrated logical model of DDDS and Interim IDEF

(called the Defense Integrated Repository System (DIRS) 2.0 model) by the

CFSW. The schedule for completing this task is unknown at this time; however,

the COTS repository tool requires it in order to be operational.

• The re-hosting of the Interim IDEF repository on the same machine as DDDS.

Part of this effort is to merge Interim IDEF and the U. S. Army Corps of Engi-

neers (USACE) Data Encyclopedia, currently called the CoE Encyclopedia.
The Interim IDEF and the CoE Encyclopedia use the same logical and physical

data models, and they share programs and utilities.

For this paper, the term repository means a source of information about things, and,

possibly, a source of the things themselves. For example, a software repository may contain

information about software as well as containing the software itself. Integration is defined

as a merging of components in some way. In this paper, the goal of integration is to simplify

user access to the three pertinent repositories, and to make it possible for a user to request

information that involves crossing repository boundaries. Users should not have to be

aware of which repository they are using, or when they are moving from one repository to

another.

Information needed to perform a detailed analysis was not available or could not be

obtained in a timely way. Therefore, as the sponsor requested, we made general assump-

tions about user requirements and developed a relatively simple model to evaluate alterna-

tives. The model served as a basis for the final recommendation of a strategy-

implementation architecture in a three-phase approach, and is sufficiently generic to be

adapted to other types of repositories.

We reviewed documentation relating to the DDDS, Interim IDEF, and DSRS repos-

itories; interviewed personnel at the CFSW/DAD; attended a Defense Data Repository

(DDR) Steering Committee meeting; and reviewed minutes and slides from a previous

DDR Steering Committee meeting. This information contributed to an understanding of

current efforts related to implementing integrated repositories.

We also applied our knowledge of other repository efforts (e.g., the Model and Sim-

ulation Resource Repository of the Defense Modeling and Simulation Office) and of the

technologies relating to repositories to develop a manageable number of alternatives. A set

of criteria was developed to evaluate the alternatives, and a model was developed that

involved assigning weights to the criteria and scores to each criterion for each alternative.

2. STRATEGIES, ARCHITECTURES, AND
EVALUATION CRITERIA

The problem of analyzing strategies for repository integration is divided into three

dimensions: the strategies themselves, alternative implementation architectures, and eval-

uation criteria. An implementation architecture may be applied to more than one strategy.

Therefore, our approach was to compare each meaningful strategy-implementation archi-

tecture in terms of how well it meets the evaluation criteria. This section explains the three

dimensions in detail.

2.1 Strategies

This report considers two major strategies: re-use integration and re-engineering

integration. Re-use integration provides the user an integrated view of component reposi-

tories without necessarily requiring major changes to those components. Re-engineering

integration restructures the underlying architecture.

A third strategy is to do nothing: continue to use and develop the existing reposito-

ries as separate entities. This has some short-term cost benefits and is the least disruptive to

the organizations involved in supporting the existing repositories. However, assuming there

is a need for integrated repositories, this strategy places the responsibility for retrieving and

integrating information in the hands of users. This leads to a great deal of duplication of

effort since each user would have to solve the integration problem individually and possibly

repeatedly. CFSW/DAD has already begun pursuing integration efforts which make further

discussion of this strategy pointless.

2.1.1 Re-Use Integration

Two general approaches to re-use integration are possible: standards based and

mapping based.

Standards-based re-use integration requires the repository providers to standardize

on a common look-and-feel interface. For example, since all three repositories of interest

are implemented using Oracle, a user interface implemented with SQL*Forms could be

required, but that is not enough to achieve a uniform interface among repositories. Two

repositories are already built upon this software, and yet the "look-and-feel" of the two sys-

tems is noticeably different (e.g., menu structure, menu selection mechanisms, key map-

pings). Unless the style of forms and menus and the flow from screen to screen are similar,

a jolt is still experienced when the user goes from one repository to another. For example,

when users move from one window to another, they have to remember a different key is

used for making a menu selection in the system associated with that window.

Mapping-based re-use integration is achieved by developing a software layer that

provides a mapping to the underlying component repositories. The software layer imple-

ments a unified logical data model that maps to the logical data models of the underlying

repositories. Users have the impression of the unified logical model. However, this strategy

also requires that the user interface be changed to use the single logical data model.

A very low-level kind of integration based on windowing was studied extensively

by IDA in 1993 [Cohen and Frame 1993]. The repositories and their user interfaces could

be left untouched, and the windowing capability of a personal computer or workstation

could be used to open windows to the various repositories of interest. This approach has the

advantage of being a "do nothing" alternative for the repository providers. The implemen-

tation could simply use existing windowing software and terminal emulator software run-

ning in windows. This can hardly be considered integration at all. In addition, it would

either require users to obtain computers with particular windowing capabilities, or else

would require extensive documentation and user support to allow for all the different win-

dowing and terminal emulation systems that are available. Because windowing provides

such a minimal gain, it was not considered further.

2.1.2 Re-Engineering Integration

The re-engineering integration strategy involves analyzing the requirements for all

the existing component repositories, designing a new repository system that incorporates

all these requirements, implementing the system, converting the information maintained in

existing repositories, and having users make the transition from existing systems to the new

system.

2.2 Architectures

The current state of hardware and software technology leads to a consideration of

four major architectures capable of supporting the integration strategies through using the

following technologies:

• Hypertext Markup Language (HTML) and the World-Wide Web (WWW, or

simply "the Web") resources.

• The Web in conjunction with commercial database management systems

(DBMSs).

• A commercial DBMS only.

• Software specifically created to support repositories.

The following sections give examples are given of how each architecture would be

used.

2.2.1 Hypertext Markup Language

To appreciate the value of the Web for supporting repositories, it is helpful to under-

stand the basic operation of the Web. The Web is a virtual client-server network on the

Internet. An Internet node may be a Web client, a Web server, or both. It is easier to under-

stand the Web from the client perspective initially.

Web clients request and receive "documents" from Web servers. These documents

are usually in the form of HTML. HTML documents contain text and possibly graphics,

and formatting commands to indicate how the information is to be displayed. In addition to

controlling the appearance of a document on the screen, the HTML commands can specify

that some parts of the document are links to other documents that can reside at any Web

server. Browsers usually indicate the parts of the document that are links by underlining or

some other type of highlighting. The user has the ability to "point-and-click" at the high-

lighted area. When the browser detects this action, it uses the information about the link to

send a request for the associated document to the proper Web server. Once the Web server

has transmitted the document back to the browser, the browser displays it to the user. The

user can then read the new document and continue to follow new links. The browser also

keeps track of where the user has been and supports returning to previously viewed docu-

ments.

This is a simplified view of the client operation. A client can receive different kinds

of files and display them all, including text documents (as already described), forms to sup-

port data entry and display, large files to be downloaded to the client site, graphics, audio

files, and other forms of multimedia data. Since the interface between the client and server

is based on a well-defined protocol, it has been possible to build a number of browsers that

support personal computers, more powerful workstations, and dumb terminals. The latter

obviously have a more limited display capability and would use a keyboard command

instead of a mouse to select a link.

A Web server is a program that listens on an Internet port for messages. These mes-

sages are in the form of a request for a document and the address of the requester. The serv-

er locates the document and transmits it to the requester. It is possible for a request to be

associated with a program to be executed. In this case, the server invokes the program and

sends it the part of the request that corresponds to parameters to that program. The program

executes and generates a document for the server to send back to the requester. This mech-

anism permits a database application to be invoked to select information from a database

and create an HTML document that incorporates the dynamically selected database infor-

mation.

This simplified overview of the Web is intended to explain how the Web supports

distributed databases, device-independent user interfaces, and client-server processing.

One way of implementing a repository is to use the Web hypertext-oriented system.

The repository information is maintained as a set of HTML documents. Tools are available

(and can be enhanced or new ones developed) to process these textual documents, produce

hierarchies of indexes to the documents, and to link documents together based upon com-

mon threads.

There are many "virtual repositories" in existence on the Web. These have been

formed either intentionally, by organizing HTML documents to provide access to underly-

ing information, or ad hoc, by finding related information on the Web and organizing doc-

uments that point to them. Each of these approaches is also supported by a number of

existing information retrieval systems that permit rapid full-text searches (e.g., Wide Area

Information System (WAIS), Lycos, Harvest, and other various "web crawlers").

2.2.2 HTML-Database Implementation

It is possible to maintain repository data in a database (or databases) and extract it

into HTML documents. This approach is already in use at a number of locations on the

Web. Many HTML-to-database interfaces have been developed for a number of commer-

cial DBMS products.

This implementation architecture can be used in two possible ways (depending

upon performance requirements):

• A "batch" process can be run periodically to generate both HTML documents

with built-in links and index hierarchy documents from the database(s). The

process of running the "batch" job can be optimized so that only modified infor-

mation has to be regenerated. The frequency of running the batch process would

depend upon the frequency of updates to the underlying database, the need for
up-to-date information, and the cost of running the update.

• When a user selects a link, a query is executed to build the target HTML docu-
ment in immediate response to the query.

2.2.3 Database Implementation

A database implementation architecture involves storing the structured data in data-

base management systems and providing "structured" access to the data. This is how

DDDS, Interim IDEF, and DSRS are currently implemented. In order to achieve integra-

tion, either the repositories are all stored in a single DBMS (centralized database), or the

databases must be able to query one another and combine the results (distributed database).

The distributed version of this architecture involves implementing a global data dictionary

or providing the ability to share data dictionary information between systems. Many com-

mercial DBMS products have implemented such a distributed database capability, and

some have the ability to interface to other commercial DBMS products.

2.2.4 Repository Product

The use of software specifically designed to support repositories is an approach

being pursued by the DISA CFSW to achieve an integration of DDDS and Interim IDEF.

It involves acquiring a COTS repository product (currently, two candidates are Rochade

and InfoSpan).

Repository products that support software engineering maintain metadata about the

information being managed. They usually provide a modeling capability so that the meta-

data can be used to establish relationships. The repository product also provides a storage

capability for the metadata. The storage is usually implemented using a commercial DBMS

product. In addition to providing support for management of an enterprise and secure

access to repository components, a repository product provides a framework to allow inter-

action among other products [Sharon and Bell 1995].

The major advantage of a repository tool is that it is specifically built to support

repositories. However, repository tools are not well defined (there is no standard set of fea-

tures that defines a repository tool), so it is difficult to make general statements about them.

Some repository tools are "software backplanes" that support the integration of software

tools. In this case it is possible that existing databases could be "plugged in" to the back-

plane.

2.3 Evaluation Criteria

A strategy may be realized by any of a number of implementation architectures.

Judgements about the value of a particular strategy and implementation architecture can be

made by rating them based upon how well they address technical, functional, administra-

tive, and cost criteria. Those criteria are explained in the remainder of this section.

2.3.1 Technical Criteria

Any technical approach to integration should be evaluated in terms of how com-

plete an integration can be achieved, how scalable the approach is to the growth of compo-

nents added to existing repositories or the addition of new repositories, how flexible the

approach is in handüng new types of repository information, and how well the approach

allows for the adoption of useful new technology as it becomes available.

Level of integration refers to the four possible levels of integration (from lowest to

highest):

• No integration.

• The ability to easily move from one repository to another.

• The ability to use results from one repository to search other repositories.

• Full integration (the user is not aware of repository boundaries).

Scalability refers to the extent to which an alternative supports growth in the num-

ber of component repositories, in the demand on those repositories, and in the size of those

repositories.

Flexibility refers to the extent to which an alternative supports future changes in the

requirements placed on integrated repositories and how well it permits adoption of new

technologies as they become available.

2.3.2 Functional Criteria

Requirements for repositories to be integrated with other repositories must be deter-

mined because these requirements will affect both the re-use integration and re-engineering

integration strategies. However, requirements have more effect on the re-engineering inte-

gration strategy since it requires new analysis and design. Understanding the functional

requirements for each repository and for integrating repositories is essential for analysis

and design. Appendix A presents questions that should be addressed when developing

functional requirements.

Because the focus of this task is repository integration, there are certain generic

things that can be said about functional criteria:

• Users should not have to be aware of repository boundaries. The set of reposi-
tories should appear as a unified whole to the user.

• Proponents for repositories should not lose any administrative control when
repositories are integrated.

2.3.3 Administrative Criteria

Administration may be centralized or distributed. Administration includes deter-

mining who is allowed access to data, what kinds of access are permitted, setting and

enforcing the policy for how updates are applied, and controlling the availability of the

data.

Another administrative concern is security. Security problems and solutions are

generally the same for all strategies and implementations. Therefore, security will not be

considered as a differentiating criterion here.

2.3.4 Cost Criteria

Costs are incurred for operating and maintaining a system and for performing inte-

gration. In addition, users incur costs in using a system. Therefore, cost criteria may be cat-

egorized as follows:

• Cost of system operation and maintenance. This is the cost of operating the

component repositories as well as the integration architecture, and of maintain-
ing the integrated system as problems are detected or requirements change.

• Cost of integration effort. This is the cost of integrating an existing system or

developing a new system. It includes the cost of making changes to existing sys-

tems and acquiring any additional technology needed to complete the integra-
tion.

• Cost incurred by users of the system(s). This is the cost of using a repository sys-
tem. There may be a one-time cost as well as a per-use cost.

3. EVALUATION MODEL

The evaluation model scores and weighs three of the four major sets of criteria:

technical, administrative, and cost. The functional criteria are not evaluated within this

model because their issues are the same for any strategy-implementation architecture

choice.

Section 3.1 presents a discussion of the evaluation approach developed for the

study. Section 3.2 describes the model that was developed using this technique. Section 3.3

contains the scoring rationale behind the weighting and scoring. Section 3.4 identifies the

advantages and disadvantages of each strategy-implementation architecture.

3.1 Evaluation Approach

Weighting. Each criterion is given a weight to indicate its relative importance in the

evaluation. All the weights should sum to 100.

If a criterion is further subdivided, its subdivisions should be assigned weights

which sum to the weight assigned to the criterion. For example, if criterion X is assigned a

weight of 20 and is subdivided into XI and X2, then XI might have a weight of 5 and X2

a weight of 15. These weights indicate the relative importance of a criterion. In the exam-

ple, X2 is three times as important as XI. The use of weights permits criteria that are not

quantitatively comparable to be considered together.

Scoring. Once the weights have been assigned, it is necessary to score each criteri-

on for each strategy-implementation alternative. Whenever possible, scores should be

based upon quantitative information. For example, if the budget for an item is known, then

the score for the cost of providing that item should be based on how well the cost adheres

to the budget.

In the model presented in this paper, a "good" score should always be higher than a

"bad" score. Since a low cost is generally considered better than a high cost, a low cost must

be converted to a high score. If one alternative has a cost that is 80% of the budgeted cost,

and another has a cost that is 50% of the budgeted cost, the inverse of this percentage might

11

be used to compute a score. In this case the lower cost would get a score of 2 and the higher

cost a score of 1.25. This score should be further normalized so that an extremely high (or

low) score does not throw off the overall score. In this example, normalization might

involve using each "raw" score divided by the maximum "raw" score; so, a raw score of 2

becomes a score of 1 and a raw score of 1.25 becomes a score of 0.625.

If it is not possible to obtain quantitative information in arriving at a score, then a

more subjective approach can be used. For example, create a number of score ranges and

assign a score based upon which range the criterion is believed to fall into. A simple exam-

ple is to use "high" (score = 3), "average" (score = 2), and "low" (score =1). This kind of

scoring may be used for such criteria as the financial viability of a supplier.

3.2 Evaluation Model

Weighting. For this study, each criterion is given a weight to indicate its relative

importance in the evaluation: technical (40), administrative (10), and cost (50). The tech-

nical and cost criteria are further refined: technical is made up of six sub-criteria, cost is

made up of three. Their weights are distributed across these sub-criteria. For example, the

sum of the weights of the six technical sub-criteria is 40.

Scoring. The technical and administrative criteria are each scored as either 3 (high),

2 (average), or 1 (low). As the administrative criterion is not further subdivided, a high

score is assigned if the potential easily exists for decentralized control; a low score is given

if decentralized control would be difficult or impossible to achieve. Cost and its sub-criteria

are also scored as high, medium, and low, but their numeric values are reversed: a high cost

gets a lower score than a low cost

Evaluation matrix. The weights, scoring, and results are summarized in Table 1,

Evaluation Matrix, on page 13. The matrix has a column for each strategy-implementation

architecture. The re-use integration strategy assumes an attempt to provide an interface to

the existing databases. Therefore, the HTML architecture is not considered since it would

involve major changes to the databases.

Operations and Maintenance (O&M) cost is assumed to be roughly the same for

each strategy and implementation.2 COTS versions of Web software, for example, brows-

ers and servers from Netscape, have become available and their providers are offering tech-

nical support to the buyer.

The existing repositories were budgeting between $160,000 and $200,000 each in FY93 for O&M.

12

Table 1. Evaluation Matrix

Concern Weight

Re-Use Integration Re-Engineering Integration

HTML-
DB

DB HTML
HTML-

DB
DB

Technical (40)

Level of integration

Front-end
integration

10 3 3 3 3 3

Logical DB 8 1 1 3 3 3

Physical DB 4 1 1 3 3 3

Scalability 6 3 2 3 3 3

Flexibility 12 3 2 3 2 2

Administrative (10) 10 3 2 3 3 3

Cost (50)

O&M 15 2 2 2 2 2

Integration 15 3 2 1 1 1

User 20 3 3 3 3 2

Score (300 possible) 261 218 255 249 223

% Score 87 73 85 83 74

The choice of criteria, the assignment of weights to the criteria, and the assignment

of scores to the criteria for each strategy-implementation architecture are the result of our

best judgement. Given the uncertainty of some of the factors, we wish to present an evalu-

ation where the decision process is clear and easy to understand, even though some will not

agree with the judgements, or the result. The use of three scores (3,2, 1) to represent gen-

eral "goodness," and the use of weights to assign priorities to the criteria, yields a simple

representation that captures everything that went into the evaluation. Why certain weights

and scores were assigned is discussed in the following paragraphs.

Weight Assignment. The technical quality of an implementation and the cost of

operating and converting to an integrated system were considered to be paramount. In these

days of elevated cost consciousness, a slightly higher weight was assigned to cost. Since

the whole point of integration is to make the system more useful to users, the cost to the

user gets a slightly higher weight than each of the other costs. By the same token, technical

13

criteria that affect integration get a higher score than the others (e.g., scalability.) Adminis-

trative concerns count for 10% of the overall score for each alternative. Although it is pos-

sible that current providers will want to give up some of their autonomy (with respect to

their repositories), it seems more conservative to give a better score when autonomy

(decentralized administration) is preserved. In addition, this agrees with one of the generic

functional criteria mentioned in Section 2.3.2 on page 8.

Score Assignment. The reason for the different scores should be clear from the

explanation of the implementations and the criteria. For a particular criterion, the same

score was assigned to two implementations if the effort, value, or cost was felt to be roughly

comparable. Different scores were assigned when it seemed there would be a significant

difference.

Note: The use of only three scoring levels means that a significant distinction must

exists before two alternatives would get different scores. A more detailed evaluation based

on better quantitative data should use ten or even one hundred scoring levels so that finer

distinctions can be captured.

3.3 Scoring Rationale

Re-engineering integration strategy. This strategy has all the costs associated

with software development. Some of this work is going on now, such as design of a con-

solidated database. It is still necessary to acquire the software that will support the new

repository, develop the integrated system, produce documentation, conduct training, con-

vert the existing repositories to the new one, have users make the transition to the new sys-

tem, and conduct a period of parallel operation. In addition, the single integrated repository

implies a change in the administrative control of the systems.

The re-engineering integration strategy has the advantage of providing an opportu-

nity to rethink previous decisions and to learn from previous mistakes. It may also provide

a much less expensive operational system since such items as software licenses, personnel,

and facilities might no longer be duplicated. It would be possible to provide a single user

interface and to provide a single point of support for users. On the other hand, user access

is delayed and cost is high.

The re-engineering integration strategy does not fit well with the current ideas and

practices of rapid prototyping and evolutionary development. This is accounted for by

assigning generally lower scores for integration cost.

14

The re-use integration strategy and the HTML-DB. This implementation archi-

tecture allows existing repositories to continue to operate exactly as they do now. Each sys-

tem will have to acquire, install, and manage Web server software. Web server software

may be obtained for free; however, there is no consistent form of support for the public

domain version. There are many informal support resources available over the Internet,

such as the comp. info, systems newsgroup. Web servers are now available as COTS

products from vendors who provide full support for license holders. The major cost will be

the personnel cost of training and supporting Web administrators. The systems currently

under consideration already have Internet connections.

The Web implementation architecture provides for faster user access to integrated

repositories, at lower cost, and with a phased, low-risk path to full integration, as is reflect-

ed in higher scores for user cost, flexibility, and technology use.

3.4 Implementation Architectures

Hypertext Markup Language (HTML). The use of a Web browser has the advan-

tage of providing a multi-level solution to the re-use integration strategy. On the one hand,

the same kind of browser software (e.g., Netscape, Mosaic) is used for all applications, and

important items within a display look the same. On the other hand, the content of a docu-

ment might look different, depending on which repository application generated it. While

this content difference might not be desirable in the long run, the mapping-based approach

provides integration sooner and supports evolution toward a more uniform appearance of

the repository application-generated documents. In addition, it provides immediate support

to users with many kinds of hardware, such as dumb terminals, personal computers, and

workstations. It also provides immediate integration with other sources of data and supports

a multi-media interface for terminals that have that capability.

The Web provides a common look-and-feel interface within the boundaries of

HTML documents. The content of a message will be application dependent, but even here

there is some consistency in the way links and fill-in-the-blank entries are displayed. Users

who start working with HTML documents quickly get used to the variations and are able

to discern the regularities. Users will be able to use their favorite browsing tools, not just

the one provided by the repository. In addition, they will be able to search other resources

on the Web while they are using the repositories. Thus, information providers can add addi-

tional documents to their systems which complement but are not part of their repository,

without affecting the normal operation of the repository. For example, DDDS could provide

15

an HTML version of Department of Defense Manual DoD 8320.1-M. (DISA CFSW is

already providing this document in machine-readable form on CD-ROMs as part of its

PCAT (PC Access Tool) distribution.) IDEF could provide postscript versions of model

graphics to be downloaded or viewed by repository users. Tutorials and documentation can

all be maintained on line.

The preceding comments apply to any architecture that is based upon the Web. In

addition, there are advantages and disadvantages that are unique to an HTML implementa-

tion.

Advantages

• It leverages off the large community of Web developers.

• Scalability and flexibility are built in.

• Both centralized and distributed administration are possible.

• It integrates smoothly with other government agency repositories that are using

the Web.

Disadvantages

• Network performance may be a problem if a Web site becomes very popular or
has a slow link to the rest of the Web. However, this is a problem for any archi-
tecture that uses the Internet or runs on a heavily loaded or under-powered plat-

form.

HTML-Database Implementation. All the advantages relating to using docu-

ments in HTML, mentioned in the previous section, are also valid here. In addition:

Advantages

• It is possible to continue to use existing repository databases and add a Web user

interface.

• The repository application providers do not have to abandon their proprietary

interfaces for users who wish to continue to use them.

• Use of a DBMS to support structured data provides better control over data
quality and consistent updates.

• A DBMS provides good facilities for building links and document indexes.

• HTML style conventions can be built into the DBMS extraction tools.

16

• Centralized and decentralized administration is still possible.

• It is possible to combine this with the HTML approach so that some providers

could maintain their data in databases while others maintain it in the form of

HTML documents.

Disadvantages

• Proprietary DBMSs, if they are not already being used, are required unless new
repositories are permitted to use an HTML-only implementation.

• Software for building HTML documents from database queries must be devel-

oped (some Web users have already developed such software that can be used
as a starting point).3

Database Implementation Architecture. A database implementation has the data-

base advantages and disadvantages of the HTML-Database implementation. However, a

major additional disadvantage is that an integrated user interface must still be established.

This requires that user interfaces provided by the DBMS vendor(s) be integrated in some

way or that a third-party user interface product be used. Such products as Powerbuilder

have the capability of interfacing to homogeneous as well as heterogeneous databases.

3 Oracle Corporation has announced a Web Interface Kit (February 7,1995). This seems to be largely a col-
lection of the tools provided by others over the Web. Such tools are actually available for other DBMS
products as well, but do not have such a tacit endorsement from the product vendors.

17

4. RECOMMENDED STRATEGY-IMPLEMENTATION
ARCHITECTURE AND PLAN

Table 1 on page 13 shows that three strategy and implementation architecture com-

binations have roughly comparable scores:

• Re-use integration strategy with HTML-DB (87%)

• Re-engineering integration strategy with HTML (85%)

• Re-engineering integration strategy with HTML-DB (83%)

Although the first combination has a score that is only slightly higher than the other two, it

is the preferred choice:

• The three repositories (Interim IDEF, DDDS, and DSRS) are already on the
Internet, and will only have to set up a Web environment. This will provide a

relatively fast implementation of integrated user interfaces. Web supports the

necessary distributed processing, and it is easy to construct Web home pages
that provide hypertext links to the repositories. In addition, only a small number

of programs are necessary to construct HTML versions of the repository hold-
ings.

• It allows for future evolution to either of the other two high scoring alternatives.

Since the view of the repositories will give the appearance of an integrated
whole, any re-engineering integration of the underlying repositories will be

invisible to the user. The effect that re-engineering integration will have on the

HTML interface will be to change the links to the documents of the integrated
repository. If these links were generated automatically (as they should have
been), an underlying re-engineering integration will be accounted for by regen-
erating the higher-level pages.

• It supports a graceful evolution toward integration. The existing systems can

continue to operate as they currently do and current users will not be affected.
The new interface will be an add-on to the existing systems. New users will be

19

able to use the new or the old interface. Existing users will be able to switch if

they so desire.

Implementation Phases. The new user interface would be implemented in three

phases.

Phase I - Web Software Implementation

• Each existing repository computer will become a Web server.

• A set of HTML documents will be developed that serve as a menu and data
retrieval interface. The highest-level document (the home page) will initially

allow users to branch off to one of the participating repositories. Each repository

will have its own set of predefined HTML documents to support interaction

with its system.

• Each system will adapt an Oracle-to-HTML interface (such software is avail-

able) to support querying the Oracle database and turning the query result into

an HTML document that is displayed to the user. (The use of Oracle retains the

investment in the current repository implementation.)

The Phase I integrated repository would not provide very good integration in the

sense of being able to jump from one repository to another based on information gleaned

from a repository. To do that would require a logical consolidation of the repositories as

specified in Phase II.

Phase II - Logical Integration

• A consolidated data model will be developed that incorporates DDDS, DSRS,
and Interim IDEE This model (already under development at DISA CFSW for
DDDS and Interim IDEF as the DIRS 2.0 model) will support integration across

the databases. For example, an attribute in DDDS relating to an attribute in

Interim IDEF will be defined over the same domain as the Interim IDEF

attribute. Thus, a value retrieved in DDDS can be used to do a search in IDEF
(and vice versa). In addition, duplication and redundancy in the databases can

either be eliminated or capitalized upon.

• The HTML documents and the Oracle-to-HTML interfaces should be adapted

to use the consolidated data model. Existing HTML documents can continue to
be used. SQL views can be used to implement the consolidated data model until

the underlying databases are actually modified.

20

The Phase II version will allow the repositories to be logically linked. Thus, it will

be possible for a query to be processed by one database which will build an HTML docu-

ment containing links to the other repository databases. By selecting a link, the user will be

generating a query to a different underlying repository.

Phase HI Physical Integration

Succeeding phases could involve re-engineering the database component of the

integrated repository. The work of these later phases can be determined after the integration

has begun and user feedback has been gained. It is possible a decision will have to be made

to leave the databases alone, to physically move them into a single DBMS, to move them

to other sites, or to replace the DBMSs with a repository tool. All these "back end" deci-

sions can be made later, based upon cost and performance considerations, without affecting

the user communities' functional access to the virtual integrated repository.

The administrative control of the participating repositories can remain localized

with the current repository providers. A further advantage of the Web approach is that exist-

ing Web resources can be used to help make the individual and integrated repositories bet-

ter. For instance, users can use electronic mail during a session to generate a message to

repository administrators, indicating problems, asking question, or making suggestions.

21

APPENDIXA.
FUNCTIONALREQUIREMENTS ANALYSIS

This appendix presents an approach for collecting and evaluating the functional

requirements for the repositories, and performing a more detailed cost-benefit analysis.

This approach is organized under the following steps.

Step 1. Identify candidate repositories and their providers (advocates).

Step 2. Analyze the functional requirements for the candidate repositories to determine

potential groupings (repositories that might provide benefits by being combined

in some way).

Step 3. Identify a set of "next generation" repositories. These are repositories that are

expected to exist as a result of the integration effort. They may include existing

individual repositories carried over "as is," and groups of existing repositories

brought under an integrated repository umbrella by one of the integration strategy

and implementation architecture combinations. Some repositories might be rec-

ommended for elimination as a result of this step.

Step 4. Collect economic information from the existing repository providers. This

includes sufficient "raw" data to be used in an economic model of implementation

architectures as well as summary data about the cost and benefit of the existing

repositories. The cost and benefit information should be projected for n years and

the basis for that projection should be explained. Costs should include operations

and maintenance costs (facilities, personnel, software, hardware), expected use of

the system (types of users, frequency of use, level of use), planned upgrades to the

system, and cost and benefit to users.

Step 5. Perform a similar analysis of the implementation architectures. This analysis must

include the cost of converting the existing systems to the candidate architectures.

A-l

Steps 1 through 3 may be partially addressed by conducting a groupware meeting,

as suggested by DASD (IM). The following questions are intended as the basis for an agen-

da for such a meeting to discuss the need and capability for integrating repositories.

• Can we agree on what we mean by "repository"? DISA CFSW uses as a work-

ing definition "a specialized application that provides for shared storage and

common access for data and objects required to support enterprise information

systems and database development and reengineering" [Palmer 1995].

Are other definitions needed? Can we agree on what we mean by "repository

integration"?

Do we want to achieve distribution of information about repository holdings?

Do we want to achieve distribution of repository holdings?

What is the list of repositories for consideration? (Candidate repositories are

listed in Table A-l on page A-4.)

Do information processing standards for repositories exist?

What are the requirements for each of the repositories?

Who are the expected users?

What is a scenario for repository use?

What do users get from accessing the repositories?

How are the repositories logically related? (A group at CFSW is developing an

integrated logical model of DDDS and Interim IDEE Is this an "as is" model,

or a "to be" model? Is this modeling effort intended to incorporate other repos-

itories later?)

What are the requirements of these combinations for integrating combinations

of repositories?

Who are the expected users of these combinations?

What is a scenario for combined repository use?

What repository efforts are on going? (For example, design of new repositories,

analysis of existing repositories, design of replacements for existing reposito-

ries, planning for integration of existing repositories, and implementation archi-

tectures of existing repositories. Aside from this IDA study of repository

A-2

integration, there are CISA CFSW's integration of DDDS and Interim IDEF;

the DDR steering committee; the DISA CFSW integrated logical model, DIRS

2.0; and DISA CFSW's acquisition of an repository system compliant with the

Information Resource Dictionary System (IRDS) standard.)

Who is doing the work?

Are the various projects complementary?

Assuming repository integration needs are defined, who should do the work?

How should it be accomplished?

Should repository software be used?

Should database software be used?

Should Web software be used?

Should custom-written software be used? If so, what modules?

Should repositories be physically integrated?

Should repositories be modified for integration?

A-3

Table A-l. DoD Repositories2

Name Proponent Remarks

Automated Resources
Management System
(ARMS)

Defense Automation
Resources Information
Center (DARIC)

Operational

Corporate Database Defense Information Tech-
nology Services Organiza-
tion (DITSO)

Planned

Static information about
operational units that are
transferred to it (DITSO)

Computer-Assisted Soft-
ware Engineering (CASE)
Database

No proponent identified Planned

Will contain survey data
about CASE tool use in the
DoD IM community

Defense Data Repository
System (DDDS)

DISA Center for Software
(DISA/CFSW)

Operational

Metadata about DoD data
elements (legacy, candi-
date, and standard)

DoD IDEF Repository Office of the Director,
Defense Information Busi-
ness Process Improvement
Program

Operational

Contains many DoD pro-
cess and data models

Defense Software Reposi-
tory System (DSRS)

DISA Center for Informa-
tion Management (DISA/
CIM)

Operational

Contains information about
software components

a. Source: ITAM Policy Planning Session, July 15,1994.

A-4

LIST OF REFERENCES

Cohen, Brian S. and Michael C. Frame. DISA/CIM Repository Integration Evaluations.

White paper. Alexandria, VA: Institute for Defense Analyses, 1993.

Information Technology Asset Management (ITAM) Policy Planning Session. ANDRU-

LIS Research Corporation, July 15,1994.

Palmer, Carl. Current Status of Defense Data Repository: Briefing to the DDR Steering

Committee. May 16,1995.

Sharon, David and Rodney Bell. Tools That Bind: Creating Integrated Environments. IEEE

Software Vol. 12, No. 2 (March 1995): pp. 76-85.

References-1

LIST OF ACRONYMS

ARMS

CASE

CD-ROM

CFSW

CIM

CoE

COTS

DAD

DARIC

DASD (IM)

DB

DBMS

DDDS

DDR

DIRS

DISA

DITSO

DoD

DSRS

FY

HTML

IDA

IDEF

IRDS

Automated Resources Management System

Computer-Assisted Software Engineering

Compact Disk - Read-Only Memory

Center for Software

Center for Information Management

Corps of Engineers

commercial off-the-shelf

Data Administration Department

Defense Automation Resources Information Center

Deputy Secretary of Defense (Information Management)

database

database management system

Defense Data Dictionary System

Defense Data Repository

Defense Integrated Repository System

Defense Information Systems Agency

Defense Information Technology Services Organization

Department of Defense

Defense Software Repository System

fiscal year

Hypertext Markup Language

Institute for Defense Analyses

Integrated Computer-Aided Manufacturing (ICAM) Method

Information Resource Dictionary System

Acronyms-1

ITAM Information Technology Asset Management

O&M Operations and Maintenance

PCAT PC Access Tool

US ACE US Army Corp of Engineers

WAIS Wide Area Information System

WWW World-Wide Web

Acronyms-2

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1995
3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Strategies and Implementation Architectures for Selected
Department of Defense Software Repositories

6. AUTHOR(S)

Audrey A. Hook, Michael C. Frame

5. FUNDING NUMBERS

DASW01-94-C-0054

Task Order T-J5-1298

7. PERFORMING ORGANKATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses (IDA)
1801 N. Beauregard St.
Alexandria, VA 22311-1772

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-3126

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DASD(EvI)
Suite 910
1225 Jeff Davis Hwy.
Arlington, VA 22202

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for final release, unlimited distribution: December 5,
1995.

12b. DISTRIBUTION CODE

2A

13. ABSTRACT (Maximum 200 words)

This document reviews proposed alternative strategies and implementation architectures for the
integration of three DoD software repositories: the Interim IDEF repository for process re-
engineering, the Defense Data Dictionary System (DDDS) repository for standard data elements, and
the Defense Software Reuse system (DSRS) repository for software components. Due to the lack of
obtainable information about user requirements, the sponsor asked IDA to make general assumptions;
consequently, an evaluation method and model were developed to evaluate alternative combinations
of strategy and implementation architectures. The model served as the basis for recommending the
re-use integration strategy with a Hypertext Markup Language database implementation architecture.
The benefits of this implementation include providing a relatively fast implementation of the
integrated repositories and support for a graceful evolution toward actual integration. A plan for a
three-phase implementation approach is also given for the evolution to the new user interface and
implementation architectures.

14. SUBJECT TERMS

Interim IDEF, DDDS, DSRS, Software Repository, HTML, World-Wide
Web, Interfaces, Integration, Apparent Integration Strategy.

15. NUMBER OF PAGES

46
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

